Unendlichkeitsaxiom

Unendlichkeitsaxiom
Un|endlichkeits|axiom,
 
ein Axiom der axiomatischen Mengenlehre, das die Existenz unendlicher Mengen postuliert. In ihrem stufenfreien Aufbau sagt es aus, dass eine Menge M existiert, zu deren Elementen die leere Menge ∅ und mit jedem Element x auch die Vereinigungsmenge x ∪ {x} aus x und der einelementigen Menge {x} gehört. Im Stufenkalkül (Typentheorie) wird die Existenz einer unendlichen Menge erster Stufe gefordert. Das Unendlichkeitsaxiom ermöglicht insbesondere die mengentheoretische Konstruktion der natürlichen Zahlen mit der Nachfolgerfunktion xx ∪ {x}. Dabei kann 0 als die leere Menge definiert werden, 1 als die Menge, die 0 als einziges Element enthält, 2 als die Menge, die 0 und 1 als Elemente besitzt, usw.

Universal-Lexikon. 2012.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Unendlichkeitsaxiom — Das Unendlichkeitsaxiom ist ein Axiom der Mengenlehre, das die Existenz einer induktive Menge postuliert. Es heißt Unendlichkeitsaxiom, da induktive Mengen auch zugleich unendliche Mengen sind. Das erste Unendlichkeitsaxiom publizierte Ernst… …   Deutsch Wikipedia

  • Zermelo-Fraenkel-Mengenlehre — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

  • Induktive Menge — Als induktive Mengen werden in der Mathematik Mengen M bezeichnet, die die leere Menge enthalten und wo für jede Menge x auch deren Nachfolgemenge enthalten ist. Das Unendlichkeitsaxiom besagt, dass es eine induktive Menge gibt.… …   Deutsch Wikipedia

  • Leere Menge — { } ∅ Die leere Menge ist ein grundlegender Begriff aus der Mengenlehre. Man bezeichnet damit die Menge, die keinerlei Elemente enthält. Da Mengen über ihre Elemente charakterisiert werden und zwei Mengen genau dann gleich sind, wenn sie… …   Deutsch Wikipedia

  • Unendliche Menge — ist ein Begriff aus der Mengenlehre, einem Teilgebiet der Mathematik. Schon die Verwendung der negierenden Vorsilbe un legt folgende Definition nahe: Eine Menge heißt unendlich, wenn sie nicht endlich ist. Mit Hilfe der Definition der endlichen… …   Deutsch Wikipedia

  • Vollständige Induktion — ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird. Da es sich um unendlich viele Zahlen handelt, kann solch ein Beweis nicht für alle Einzelfälle durchgeführt werden. Er wird daher in zwei… …   Deutsch Wikipedia

  • Widerspruchsfreiheit — In der Logik gilt eine Menge Φ von Aussagen als konsistent oder widerspruchsfrei, wenn aus ihr kein Widerspruch abgeleitet werden kann. Das bedeutet in der Prädikatenlogik, dass es keinen Ausdruck gibt derart, dass sowohl als auch aus Φ ableitbar …   Deutsch Wikipedia

  • Zermelo Fraenkel — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

  • Aktual unendlich — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel gelöscht, die nicht… …   Deutsch Wikipedia

  • Aktuale Unendlichkeit — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel gelöscht, die nicht… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”